

Zhanhe Shi

New York University

zhanhe.shi@outlook.com | bio.zhanheshi.com | github.com/saltfish-len

Education

New York University

Master of Science in Information Systems (MSIS)

New York, NY, USA

Sep 2025 - Present

- **GPA: 4.0/4.0**

- **Courses:** Fundamental Algorithms, Data Communications & Networks, Deep Learning, Data Science & AI for Business, Database Systems, The Global Economy

University of California, Berkeley

College of Engineering, Computer Science

Berkeley, CA, USA

Aug 2023 - May 2024

- **GPA: 3.83/4.0**

- **Courses:** Deep Neural Networks, Intro to Computer Vision and Computational Photography, Optimization Model in Engineering

ShanghaiTech University

School of Information Science and Technology, Bachelor of Computer Science and Technology

Shanghai, China

Sep 2021 - Jun 2025

- **Courses:** Machine Learning, Econometric Analysis Methods and Modeling, Mathematical Modeling
- **Honors & Awards:** Outstanding Student, 2023-2024

Research & Project Experience

Multiple Human-Object Interaction Generation with Conditional Diffusion

Shanghai, China

Graduation Project, ShanghaiTech University

May 2025

- Proposed an MPMO diffusion framework using SMPL parameters and 6D rotation, achieving a **FID of 8.95** on selected dataset.
- Introduced kinematic constraints (velocity/acceleration) to enforce physical plausibility, **enhancing temporal coherence** by up to 24.6%.
- Integrated PointNet++ object encodings into an **AdaLN-Zero modulated DiT**, maintaining temporal feature consistency and reducing position errors.

HOI-M3 : Capture Multiple Humans and Objects Interaction within Contextual Environment

Shanghai, China

Third Author, Frontier Science Research Base on Intelligent Human-Machine Collaboration and Interaction

Aug 2023 - Mar 2024

- Co-created a large-scale MPMO interaction dataset comprising **(181M+ frames)** captured via synchronized RGB and object-mounted IMUs.
- Engineered a SAM-based masking tool, generating pixel-accurate initial masks to bootstrap the **whole 42 views tracking pipeline** across 199 sequences.
- Constructed 3D human ground-truth for all **199 sequences**, optimizing SMPL parameters via ViTPose multi-view keypoint matching and tracking.
- **Accepted by CVPR 2024 (Highlight - Top 3% of all submissions)**. (arXiv:2404.00299v2 [cs.CV])

FGSM-Based Attack on SAM Model

Berkeley, CA, USA

Team Leader, University of California, Berkeley

Apr 2024

- Led the reproduction of a pipeline to generate **FGSM** adversarial perturbations against SlimSAM, benchmarking model robustness.
- Evaluated attack effectiveness on a 100-image subset of the SA-1B dataset, successfully degrading segmentation performance by **dropping mIoU to 79.32%**.
- Built a Gradio **interactive demo** enabling real-time parameter tuning and side-by-side visualization for qualitative inspection of attack failure modes.

3D Character Generation Using ControlNet and LoRA

Berkeley, CA, USA

Team Member, University of California, Berkeley

Nov 2023 - Dec 2023

- **Fine-tuned SD1.5 via LoRA** to enforce character identity consistency across generations, reduced FID by 15%
- Integrated ControlNet with **3D human pose solutions** to enforce spatial consistency, successfully mitigating multi-view geometric artifacts.
- Engineered the diffusion-based **Depth Control pipeline**, projecting depth priors via camera extrinsics to regulate body proportions for Gaussian Splatting.

Internship Experience

Hunsun Technologies Inc.

Hangzhou, Zhejiang, China

Intern, Junior Software Engineer

May 2024 - Jul 2024

- Constructed a **Document Layout Analysis benchmarking pipeline** on the Chinese CDLA dataset, evaluating 7 open-source and commercial models.
- Fine-tuned state-of-the-art multimodal networks (LayoutLMv3, VGT) and object detection models (YOLO), achieving a peak **mAP@50:95 of 88.4** with VGT.
- Quantified the speed-accuracy trade-off, demonstrating YOLO achieved a **103x speedup** with a 10% mAP drop compared to the VGT model.

Skills

Programming Python (NumPy, Matplotlib, PyTorch, OpenCV), C/C++, MATLAB

Miscellaneous Linux, \LaTeX , Microsoft Office, Git, Tencent Cloud, Simulation of Urban Mobility, Blender